Triangles with largest integer semiperimeter.

Problem with a solution proposed by Arkady Alt, San Jose, California, USA.

For given integer numbers $a_1, a_2, a_3 \ge 2$ find the largest value of integer semiperimeter of a triangle with integer sidelengths t_1, t_2, t_3 , satisfying inequalities $t_i \le a_i, i = 1, 2, 3$. **Solution**.

Let $s := \frac{t_1 + t_2 + t_3}{2}$. Since $t_i < s, i = 1, 2, 3$ (triangle inequalities) then our problem is:

Find $\max s$ for which there are positive integer numbers

 t_1, t_2, t_3 satisfying $t_i \le \min\{a_i, s-1\}, i = 1, 2, 3, t_1 + t_2 + t_3 = 2s$.

First note that $s \ge 3$, $t_i \ge 2$, i = 1, 2, 3. Indeed, since $t_i \le s - 1$ then $1 \le s - t_i$, i = 1, 2, 3 and, therefore, $t_1 = 2s - t_2 - t_3 = (s - t_2) + (s - t_3) \ge 2$. Cyclic we obtain $t_2, t_3 \ge 2$. Hence, $2s \ge 6 \iff s \ge 3$.

Since $t_3 = 2s - t_1 - t_2$, $2 \le t_3 \le \min\{a_3, s - 1\}$ then $1 \le 2s - t_1 - t_2 \le \min\{a_3, s - 1\} \iff \max\{2s - t_1 - a_3, s + 1 - t_1\} \le t_2 \le 2s - 1 - t_1$ and, therefore, for t_2 we obtain inequality

(1) $\max\{2s-t_1-a_3,s+1-t_1,2\} \le t_2 \le \min\{2s-1-t_1,a_2,s-1\}$ with conditions of solvability:

(2)
$$\begin{cases} 2s - t_1 - a_3 \le s - 1 \\ 2s - t_1 - a_3 \le a_2 \\ s + 1 - t_1 \le a_2 \\ 2 \le 2s - 1 - t_1 \end{cases} \Leftrightarrow \begin{cases} s + 1 - a_3 \le t_1 \\ 2s - a_2 - a_3 \le t_1 \\ s + 1 - a_2 \le t_1 \\ t_1 \le 2s - 3 \end{cases}.$$

Since $s-1 \le 2s-3$ then (2) together with $2 \le t_1 \le \min\{a_1, s-1\}$ it gives us bounds for t_1 :

(3) $\max\{s+1-a_3, 2s-a_2-a_3, s+1-a_2, 2\} \le t_1 \le \min\{a_1, s-1\}.$

Since $2 \le a_i, i = 2,3$ then $s+1-a_2 \le s-1, s+1-a_3 \le s-1$ and solvability condition for (3) becomes

$$s+1-a_3 \le a_1 \iff s \le a_1+a_3-1, 2s-a_2-a_3 \le a_1 \iff s \le \left\lfloor \frac{a_1+a_2+a_3}{2} \right\rfloor,$$

 $s+1-a_2 \le a_1 \iff s \le a_1+a_2-1, 2s-a_2-a_3 \le s-1 \iff s \le a_2+a_3-1.$

Thus, $s^* = \min\left\{\left\lfloor \frac{a_1 + a_2 + a_3}{2} \right\rfloor, a_1 + a_2 - 1, a_2 + a_3 - 1, a_3 + a_1 - 1\right\}$ is the largest

value of integer semiperimeter.